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ABSTRACT

Small-magnitude seismic events, either natural or induced
microearthquakes, have increasingly been used in explora-
tion seismology with applications ranging from hydrocarbon
and geothermal reservoir exploration to high-resolution
passive seismic tomography surveys. We developed an auto-
mated methodology for processing and analyzing continu-
ously recorded, single-channel seismic data. This method
comprised a chi-squared-based statistical test for micro-
seismic event detection and denoising filtering in the S-
transform domain based on the Otsu thresholding method.
An automatic P-phase picker based on higher order statistics
criteria was used. The method was used with data from a
surface seismic station. The performance of the method
was tested and evaluated on synthetic and real data from
a microseismic network used in a high-resolution PST sur-
vey and revealed a high level of consistency.

INTRODUCTION

During enhanced hydrocarbon recovery operations such as hy-
draulic fracturing or during high-resolution passive seismic tomo-
graphy (PST), small-magnitude earthquakes are used to increase
our knowledge of reservoir characteristics.
As the stations recording in each survey increase in number and

sampling frequency, data sets become too large for manual proces-
sing to be effective. Event detection and accurate arrival time pick-
ing from the recorded seismograms can be very hard due to the
generally low signal-to-noise ratios (S/Ns) of the recorded events.
In this paper, we present a strategy to automatically process con-
tinuous seismic records from a microseismic network or an array
of receivers and, by processing one selected component for each

station/receiver, detect microseismic events and their corresponding
P-phase arrival times. The aim is processing a large number of con-
tinuous seismic records and producing accurate P-wave arrivals. To
achieve this, three steps are followed. Initially, a detection algorithm
is used to detect the parts of the recordings that could contain
seismic events. Then these segments are cut and denoised in the
S-transform domain. Finally, a more accurate P-wave arrival picker
is applied. In this way, the segments of the records that contain po-
tential events are identified quickly and the more computationally
intensive parts of denoising and P-wave phase picking can be ap-
plied only to the selected segments of the records. For the multiple
sensors that make up a recording network/array, the detection algo-
rithm can be applied in parallel for each recording channel sepa-
rately, giving us the possibility to exclude events detected by
less than a preset number of stations (e.g., three or four). Also,
the picking algorithm is run for each event for all stations that de-
tected it. This enables us to have an estimate of the consistency of
the automatic picking and knowing the geometry of the stations
have an initial identification of the outliers. Because this method
is applied at each processed channel separately, the recording con-
figuration can be irregularly distributed.
The induced seismic activity by hydraulic fracturing is used for

improving hydrocarbon production (e.g., Maxwell and Urbancic,
2001; Eisner et al., 2006; Shapiro et al., 2006), in geothermal energy
reservoir characterization (e.g., Norio et al., 2008), and monitoring
CO2 sequestration (e.g., Warpinski et al., 1999). Recently, the ap-
plication of high-resolution PST surveys in regional hydrocarbon
exploration has demonstrated that its resolution is strongly depen-
dent on the number of seismological stations used (Tselentis et al.,
2011a). Thus, for a conventional PST survey, we end up with a vast
amount of seismic waveforms to process (Durham, 2003;
Kapotas et al., 2003; Martakis et al., 2006; Tselentis et al., 2011).
For high-resolution PST applications, we need as many as pos-

sible of small magnitude events that can be considered as point
sources. These small events, especially if acquired in areas of high
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anthropogenic activity, are often strongly affected by noise. The
high noise level makes the accurate determination of P-wave arrival
difficult, so procedures that allow a more reliable first arrival pick-
ing are required (Tselentis et al., 2011a).

DETECTION OF MICROSEISMIC EVENTS

Event detection is the initial step of this data processing flow. The
seismic records, in addition to the seismic events of interest, contain
noise with varying energy levels and frequency content that often
mask these events. The records containing the events must be
identified before any other processing can be applied. Most
event-detection algorithms are based on computing the fluctuation
of S/N as a function of time for a specified frequency band. The

most commonly used approach is the short- to long-term average
ratio (STA/LTA) method. In this approach, the absolute values of
the signal within a long and a short moving time window are
summed and their ratio calculated. When the STA/LTA exceeds
a user-defined threshold, a detection time for the recording receiver
is assigned. This can be applied in either one of the components
(usually the vertical one) or a combination of them. The details
of this method can be found in Trnkoczy (2009). Many other
event-detection methods have also been proposed by various re-
searchers, and the most common are listed in Table 1.

In the present investigation, we follow a new, microseismic
event-detection method, instead of STA/LTA. This method is based
on the chi-squared-based statistical test under a sequential hypoth-
esis testing framework.
The chi-squared goodness-of-fit test (also known as Karl Pear-

son’s test) is often used to test the equivalence of a probability den-
sity function (PDF) of a measured data set against a theoretical one.
As usually applied, this test considers a set of N independent

observations from a random variable x with a PDF, pðxÞ. The N
observations are grouped into K equal frequency interval bins,
forming a frequency histogram. A usual measure for the total dis-
crepancy for all class intervals is the following parameter q (Bendat
and Piersol, 1986):

q ¼
XK
i¼1

ðOi − EiÞ2
Ei

; (1)

where the number of observations falling within each class interval
is called the observed frequency (Oi) and the number of the obser-
vations expected to fall within each bin is called the expected fre-
quency (Ei).
For the case of a time series seismic signal, the distribution of the

seismic noise is unknown; thus, using the equal length bins selec-
tion could falsely result in zero estimations for specific bins, which
would drive q to infinity. This problem prompted us to apply a mod-
ified Pearson’s test (Lois et al., 2010).

In our approach, the samples in the selected time window of the
record are also used to estimate the expected frequencies. Instead of
equal length bins, assuming that the seismic noise follows a known
distribution we use an equal number of observations per bin, keep-
ing the number of samples in each bin the same (equiprobable par-
titioning) while changing the lengths of the bins, and instead of the
frequencies Oi and Ei, we use the corresponding lengths of the bins
LO
i and L̂E

i .
The LO

i is calculated for every window of the continuous record-
ing that we use from the equiprobable partitioning of the observed
PDF, while L̂E

i is calculated before the analysis by selecting a noise
segment of the record indicative of the noise, containing no bursts or
earthquakes. If the continuous recording spans several days and the
character of the seismic noise changes significantly during that
time, a new L̂E

i could be recalculated.
Figure 1a shows a random signal window, its equal length bins

partition (Figure 1b), and its equal number of observations per bin
partitioning (Figure 1c) used in our approach. An obvious advan-
tage is that we avoid having zero values; an example is the first bin
of Figure 1b, for the equal length bins partition. We have also se-
lected to use the natural logarithm of the calculated parameter for
noise suppression purposes because it has proven to work better
with the thresholding that is used subsequently. Thus, we introduce
the following modified statistical test for the event detection:

Table 1. Common event-detection methodologies proposed in
the literature.

Category Authors

Maximum likelihood Freiberger, 1963

Chung et al., 2001

Fractal Tosi et al., 1999

Envelope Allen, 1978

Stewart, 1977

Earle and Shearer, 1994

Waveform correlation Gibbons and Ringdal, 2006

Arrowsmith and Eisner, 2006

Song et al., 2010

Hanafy et al., 2007

Eisner et al., 2008

Drew et al., 2005

Spectral density Shensa, 1977

Walsh transform Goforth and Herrin, 1981

Fretcher and Sharon, 1983

McGarr et al., 1964

Filtering Clark et al., 1981

Sterns et al., 1981

Evolution spectra Vincent et al., 2004

Particle motion Wagner and Owens, 1996

Withers et al., 1999

Kalman filtering Baziw and Weir-Jones, 2002

STA/LTA Swindell and Snell, 1977

Houliston et al., 1984

Shamshi et al., 1990

Ruud and Husebye, 1992

Tong, 1995

Yung and Ikelle, 1997

Botella et al., 2003

Sharma et al., 2006

Kumar et al., 2009

Khadhraoui et al., 2010
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qm ¼ ln

 XK
i¼1

ðLO
i − L̂E

i Þ2
L̂E
i

!
: (2)

In equation 2 for a sufficient number of bins, it is improbable that
LO
i − L̂E

i ¼ 0 for all steps i. The proposed modification of the Pear-
son statistical test does not follow a X2

K−1 distribution, and to solve
the event-detection problem, we have designed a thresholding-type
hypothesis testing framework using the Otsu method (Otsu, 1979)
that provides an optimal separation between noise and seismic
events. The flowchart in Figure 2 summarizes the various stages
of the proposed event-detection methodology.
Obviously, the initial input is the continuous recording of the time

series in which seismic events might or might not be present. Thus
for given record Xn, n ¼ 1; 2; ::; T, we form an estimation of the
PDF fðxÞ of the test, by computing its values by means of a sliding
window of length N. In this way, equation 2 can be written as

qmðXn
n−Nþ1Þ ¼ ln

 XK
i¼1

ðL0
i ðXn

n−Nþ1Þ − L̂E
i Þ2

L̂E
i

!
: (3)

The window length is set empirically and can depend on the
range of magnitudes of the events we are looking. For example,
for the magnitudes in the real data set presented,
a 1 s window was used. For smaller events that
have small duration and rapid changes, a shorter
window could be selected, while for larger
events, a longer window could be selected.
As the window becomes bigger, the test curve

becomes smoother, meaning a larger probability
for missing an event. The smaller the window,
the more sensitive it is to rapid changes but
the more computing intensive. For selecting
the number of observations per bin, we take into
account two important restrictions. A large num-
ber of bins, with respect to the length of the used
window, is needed to have high resolution for our
analysis, but also based on Bendat and Piersol
(1986), each nonequal-length bin must contain
at least three samples (observations). For the type
of events used on the synthetic example and the
real test that follows, a window of 1 s (100 sam-
ples) was used. In our application, each bin con-
sisted of five samples dividing the moving
window into 20 nonequal-length bins.
The Otsu thresholding method will be applied

on the calculated values of the parameter qm. For
any given value p, we can separate the values of
the previously calculated chi-squared test into the
following two classes:

C0ðpÞ ¼ fqmðXn−Nþ1Þ ≤ pg;
C1ðpÞ ¼ fqmðXn−Nþ1Þ > pg: (4)

The goal of using this method in this stage is to
find the optimal value p� that will provide the
optimal separation between the noise distribution

and the distribution of seismic events. Using these classes, fðxÞ can
be expressed as follows:

fðxÞ ¼ λ0ðpÞf0ðx;pÞ þ λ1ðpÞf1ðx;pÞ; (5)

where fiðxÞ is the PDF of the class CiðpÞ, i ¼ 1; 2, and λιðpÞ the
percentage of points belonging into each class. Following the
thresholding scheme of Otsu (1979), we define the following cost
function:

σBðpÞ ¼ ðμ1ðpÞ − μ0ðpÞÞ2λ0ðpÞλ1ðpÞ; (6)

where μiðpÞ are the mean values of the class CiðpÞ. Then, by find-
ing the p value for which σB becomes maximum

p� ¼ argmax
p

σBðpÞ; (7)

we obtain an optimum separation of the classes, which is equivalent
to solving the following hypothesis-testing problem. In this hypoth-
esis testing, our initial assumption (H0) is that the sliding window is
comprised of noise. When our test exceeds the critical value p�,
calculated by the Otsu thresholding, this initial hypothesis is not
valid and the alternative (H1) is true, indicating the presence of
a seismic event within the window

Figure 1. (a) Random signal, (b) its equal length bins partition, and (c) its equal number
of observations per bin partitioning.
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H0 ¼ noise process andH1 ≠ noise process;

by deciding Hi if qmðXn−Nþ1Þ ∈ Ciðp�Þ, i ¼ 1; 2. In this way, the
windows that we expect to contain seismic events are identified and
will be used in the next processing stages.

DENOISING

The presence of seismic noise in the record can deteriorate the
performance of the picking algorithms, especially in the case of
small events. So an important step in the processing is to attenuate
the energy of the seismic noise while not only preserving the energy
from the event but also avoiding altering the arrival times of the
seismic phase. Filtering methods are often used to suppress noise
to improve the S/N. As the energy of the seismic noise present in the
signal can have diverse characteristics a number of filtering techni-
ques have been used for noise filtering. Some filtering methods
commonly employed for seismic noise attenuation are listed in
Table 2.
Geophysical data processing has adapted and used, techniques

initially developed for image filtering (Ristau and Moon, 1997;
Hale, 2001; Fehmers and Höcker, 2003; Ferahtia et al., 2009). Bad-
dari et al. (2011) propose the anisotropic nonlinear diffusion filter
initially used for image filtering (Perona and Malik, 1990) to reduce
noise in seismic data.
A similar approach based on the S-transform is also applied suc-

cessfully by Banister et al. (2010) to denoise microseismic data
from a geothermal field. In the present paper, we have combined

the S-transform and the Otsu thresholding image processing criter-
ion to automate the filtering process of noisy seismic records.
The calculation of the S-transform of the signal is the first step in

denoising. The S-transform (Stockwell et al., 1996) is used to trans-
form a signal in the time domain, producing a localized spectrum in
the time-frequency domain. The S-transform of the signal xðtÞ is
given by the following equation:

Sðτ; fÞ ¼
Z

∞

−∞
xðtÞ jfjffiffiffiffiffi

2π
p e−

ðτ−tÞ2f2
2 e−i2πftdt; (8)

where t is time, f is frequency, and τ controls the position of the
Gaussian window along the time axis.
An important property of the S-transform is its reversibility; that

is, the initial signal xðtÞ can be fully recovered from its trans-
form Sðτ; fÞ. Simon et al. (2007) show that to recover the inverse
S-transform, the following equation should be used, so that the crea-
tion of artifacts can be avoided:

xðtÞ ¼
ffiffiffiffiffi
2π

p Z
∞

−∞

Sðt; fÞ
jfj ei2πftdf: (9)

Another important property of the S-transform is its linearity, and
for the case of additive noise to the signal, the data can be modeled
as dataðtÞ ¼ signalðtÞ þ noiseðtÞ; thus, the S-transform can be writ-
ten as

SfdataðtÞg ¼ SfsignalðtÞg þ SfnoiseðtÞg. (10)

To minimize the effect of noise, the Otsu thresholding method is
applied once again on the signal but this time in the time-frequency
domain. Initially, a histogram is constructed using the elements of
the 2D matrix Sðτ; fÞ. As in the case of event selection, an optimal
p� value is searched that can separate the areas of the
S-transform in two clusters: one dominated by the signal’s high en-
ergy (higher amplitudes) and the other by noise. This procedure is
applied twice: once for the real part and once for the imaginary part
of the S-transform. This way, the filter designed has two compo-
nents that are applied on the real and imaginary parts of the signal
in the time-frequency domain. The result is inverse S-transformed,

Table 2. Commonly used noise reduction methodologies in
seismic signals.

Category Authors

Singular value decomposition Ursin and Zheng, 1985

Lu, 2006

Principal component analysis Hagen, 1982

Karhunen-Loève transform Al-Yahya, 1991

Jones and Levy, 1987

Eigen image Canales, 1984

Gulunay, 1986

Artificial neural networks Essenreiter, 1999

Djarfour et al., 2008

Fuzzy methods Hashemi et al., 2008
Figure 2. Event-detection algorithm flowchart.
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to retrieve the filtered signal in the time domain. This method can
clear the first arrival to improve the accuracy of the first pick in
moderate to high S/Ns, but it will not work as well in a very
low S/N in which the energy of the seismic noise is comparable
to that of the seismic event. The next step of the processing flow
is P-phase picking on the denoised signal.

P-PHASE PICKING

Accurate picking of P-wave arrival times is very important for
reservoir monitoring or PST surveys. Accurate automatic event de-
tection and picking, especially when dealing with large data sets,
can speed up and help improve the quality of the picks. Various
methodologies have been proposed, the most common of which
are presented in Table 3. The method used in this paper is based
on the properties of higher order statistics (HOS) parameters,
namely, “skewness, kurtosis, and differential entropy” (also known
as “negentropy”).

The first- and second-order statistics (such as mean value, var-
iance, autocorrelation, and power spectrum) are extensively used
in signal processing to describe linear and Gaussian processes.
In practice, many processes deviate from linearity and Gaussianity.
HOS can be used for the study of such processes (Nikias and Pet-
ropulu, 1993).
Let fXðkÞg, k ¼ 1; 2; 3; : : :M is a real stationary discrete time

signal of length M, and its moments up to order 4 exist; the esti-
mators used are

skðXÞ ¼
P

N
i¼1fðXðiÞ − m̂xÞ3g

ðN − 1Þσ̂3x
(11)

and

kurðXÞ ¼
P

N
i¼1fðXðiÞ − m̂xÞ4g

ðN − 1Þσ̂4x
; (12)

where m̂x is the mean and σ̂x the standard deviation of fXðkÞg and
N is the length of the time-moving window that is used for the es-
timation (Saragiotis et al., 2002).

In the present study, we estimate the P-phase arrival time using
these HOS parameters and, additionally, an estimation of the negen-
tropy JðXÞ defined as a function of skewness and kurtosis (Jones
and Sibson, 1987)

JðXÞ ≈ 1

24
sk2ðXÞ þ 1

48
kur2ðXÞ: (13)

According to the implemented algorithm (Saragiotis et al., 2002),
a moving window “slides” on the recorded signal, estimating skew-
ness, kurtosis, and negentropy. Skewness can be considered as a
measure of symmetry of the distribution, while kurtosis is a measure
of heaviness of the tails, so they are suitable for detecting parts of
the signal that do not follow the amplitude distribution of ambient
noise. Seismic events have higher amplitudes in comparison to the
seismic noise, and these higher values occupy the tails of the dis-
tribution (high degree of asymmetry of distribution). In the case of
seismic events, skewness and kurtosis obtain high values, present-
ing maxima in the transition from ambient noise to the seismic

Table 3. P-phase picking methodologies.

Category Authors

Energy ratio criteria (STA/LTA) Swindell and Snell, 1977

Allen, 1978

Saari, 1991

Ruud and Husebye, 1992

Earle and Shearer, 1994

Baer and Kradolfer, 1987

Hildyard et al., 2008

Abaseyev, 2009

Autoregressive methods Morita and Hamaguchi,
1984

Takanami and Kitagawa,
1988, 1991

Sleeman and Van Eck,
1999

Leonard and Kennett, 1999

Leonard, 2000

Fractal-based methods Boschetti et al., 1996

Seismic polarity assumption Flinn, 1965

Montalbetti and
Kanasewich, 1970

Vidale, 1986

Jurkevics, 1988

Magotra et al., 1987, 1989

Cichowicz, 1993

Wagner and Owens, 1996

Anderson and Nehorai,
1996

Neural networks Wang and Teng, 1995,
1997

Mousset et al., 1996

Dai and MacBeth, 1995,
1997

Zhao and Takano, 1999

Gentili and Mhelini, 2006

Maximum likelihood and high-order
statistics methods

Christofferson et al., 1988

Roberts et al., 1989

Kushnir et al., 1990

Saragiotis et al., 2002,
2004

Fuzzy logic Chu and Mendel, 1994

Wavelet transform Anant and Dowla, 1997

Yung and Ikelle, 1997

Pattern recognition Joswig, 1990

Hybrid methods Saragiotis et al., 1999

Akazawa, 2004

Diehl et al., 2009
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events (P-arrival). Out of the above criteria, kurtosis appears to per-
form better than the others (Lois et al., 2010; Tselentis et al., 2011a).
As the curves of these HOS parameters’ are calculated using a

sliding window in time, they reach their maximum values only
when the time window contains a large fraction of energy from
the seismic event beyond the P-arrival. So to have an accurate es-
timation of the P onset time, it is preferable to use the maximum

slope and not the maximum values of these parameters. Figure 3
presents the stages of the proposed event-detection and P-phase
picking methodology. It has been implemented in C++ code and
requires minor computer resources when running on a conventional
PC and processing the data in real time, even in the case of an array
of several stations.

TESTS AND RESULTS

Application on synthetic data

Initially, the outlined methodology was extensively tested on syn-
thetic data. The synthetic test consists of constructing a synthetic
“eventlike” seismic record for which the accurate onset is known.
Then we apply our method on this “event” and calculate the P-wave
arrival time. This way we can compare the result of the method with
an exact P-wave arrival time to better estimate the error. The syn-
thetic seismograms were constructed by the following procedure:
initially Gaussian noise is filtered with a Park-McClellan optimal
equiripple finite impulse response filter. This is repeated two times.
Initially, for keeping the P-frequencies from 20 up to 40 Hz and the
second time for S-waves we keep frequencies from 10 to 15 Hz.
Next, the signal is multiplied by a negative exponential function
to simulate the effect of the P- and S-coda attenuation. The part
of the signal corresponding to S-waves is shifted in time, and
the two signals are added (Figure 4).
To introduce noise to the synthetic test, an appropriately scaled

window with real noise from a seismic record can be added to the
event that we want to detect. By using the standard deviations of the
noise record and the synthetic event, the exact S/N can be calculated
using

S=N ¼ 20 log10

�
σsignal
σnoise

�
. (14)

Based on the S/N level we want to test, the amplitudes of the
ambient noise are multiplied by the suitable scalar to scale to
the desired amplitudes, before adding them to the synthetic event.
Next, the chi-squared-based test statistic is applied to verify the ex-
istence of the event (Figure 5) and qm is calculated using equation 3.
The thick black line at amplitude 1 indicates the points of the record
whose qm values belongs to class C1 (signal), while the black line
indicates the record of the signalC0 (noise). This test has shown that
this method can detect the event sufficiently well. There is also a

very short false detection after the end of the
event, which we believe was caused by the
way the synthetic event abruptly stops and the
signal becomes flat again (Figure 4). We have
tested this approach with various levels of noise
with good results. With this procedure we have
been able to detect events even in very noisy sig-
nals with S/Ns as low as 5 dB and in some test
cases even lower.
The next step is to transform the seismic signal

into the time-frequency domain by applying the
S-transform. Using the Otsu thresholding meth-
od to the real and the imaginary part of the trans-
form, the filter is automatically designed and
applied. Finally, the onset of the first arrival is
automatically picked using the HOS (in this case
the kurtosis) criterion.

Figure 3. Flowchart of the proposed methodology for event detec-
tion, denoising, and P-phase picking.

Figure 4. Noise-free synthetic signal.

KS48 Tselentis et al.



In Figure 6b, the effect of S-transform filtering can be seen on the
noisy synthetic seismogram in Figure 6a. The automatic picking
results using the kurtosis criterion to the unfiltered and filtered seis-
mograms are also shown.
When comparing to the true pick, we can see that the picking

accuracy for the filtered signal is improved versus the noisy one.
The applied methodology has the additional advantage of not

altering the P-phase arrival. The whole process runs automatically
without needing to fine-tune the parameters.

Application on real data

In this section, we test the proposed methodology on real data. A
continuous noisy seismic record of 10 minutes. is selected, and the

Figure 6. (a) Synthetic seismogram with addition of real seismic noise (b) Kurtosis calculated for the initial synthetic seismogram. (c) Seis-
mogram filtered in the time-frequency domain using the S-transform. (d) Kurtosis calculated for the filtered synthetic seismogram. The dashed
line is the automatic pick as calculated using the HOS (kurtosis) criterion, and the dotted line is the actual position of the P-phase arrival.

Figure 5. (a) Synthetic signal with addition of
noise and the results from the chi-squared-based
event detection. The thick black lines at value 1
indicate the detection of a seismic event, while
the gray ones at zero indicate seismic noise.
(b) Histogram of test qm with the Otsu optimal
threshold value.
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chi-squared-based test is applied (Figure 7). All five events in this
record (A to E) were successfully detected. Also, there was a false
detection on a record segment (F), which had higher amplitudes and
different frequency content than the record noise, justifying the se-
lection by the algorithm, but as can be seen in Figure 7, in contrast
to the seismic events (A to E) its waveform is not typical of an earth-
quake (more simple) and secondarily it was not present in neigh-
boring stations. Based on this it was found not to be a usable signal.
From the detected events, we select one with a low S/N. Similar to
the case of the synthetic data, the S-transform is applied on the sig-
nal (Figure 8) and the event is filtered by the designed filter based on
the Otsu thresholding method. Finally, the first arrival is automati-
cally picked using the kurtosis criterion.
A disadvantage of the method is that the HOS criteria when the

level of noise is close to the level of the signal could miss the first
arrival, picking a secondary one instead. Such a mispick can be seen
in the noisy (raw) signal of Figure 7a. Here, denoising can reduce
such mispicks improving the accuracy.

Figure 9a and 9b compares the automatic P-phase picking with
the real one, for the unfiltered and filtered signal, respectively,
showing a better agreement with the manual pick.

Application on multisensor real data

A characteristic of the events recorded in a microseismic network
during a high-resolution PST survey is that their epicenters are in-
side or close to the network and they mostly have low magnitudes.
To evaluate the performance of the above three HOS-based methods
(skewness, kurtosis, and negentropy), 15 seismic events (Figure 10)
were selected from a PST survey in a hydrocarbon field in southeast
Albania (Tselentis et al., 2011a). These were recorded by a 50-
station microseismic network using LandTech’s LT-S100 3C velo-
city sensors, with a sampling rate of 200 samples per second.
These events have magnitudes ranging from 1.1 to 1.8 ML, their

energy is relatively low, and their depths range from 2.5 up to
11 km. All records, having a P-wave arrival picked by an expert
analyst, were used (353 arrivals).

Figure 8. (a) S-transform of the selected event and
(b) corresponding S-transform after application of
the filter.

Figure 7. Section of real data recording. (A, B, C,
D, E, and F indicate the parts of the signal that the
algorithm identified as events.) Zoomed area
shows event (A) selected to apply the proposed
methodology. Vectors indicate the detected events;
the thick black dots at approximately value one
indicate the presence of seismic events as resulted
from the proposed methodology.

KS50 Tselentis et al.



From each station’s continuous record after the detection algo-
rithm has indicated the presence of a seismic event, a segment
of the record that starts 5 s before the detection and ends 5 s after
the end of the detection. This ensures that the seismic segment se-
lected contains the seismic event. This processing can be executed
in parallel for more than one station, decreasing the time needed.
Finally, the results for all the stations of the network can be com-
pared and the events detected in less than four stations disregarded
as false.
The vertical components of these records were filtered using the

previously described S-transform methodology. The three HOS-
based picking algorithms were applied on the
data set to compare their performance against
each other, resulting in three sets of calculated
automatic picks. Finally, the comparison of the
automatic picks against the manual ones is used
for calculating the residual times for measuring
their performance.
The automatic P-phase onset identification is

divided in two parts: a detection algorithm for
locating segments of the record containing seis-
mic events and an accurate picker (the automatic
HOS). As a measure of the quality of the signal,
we calculated the S/N for every event. To accom-
plish this, the standard deviation was calculated
using a selected time window before the P-onset
(noise) against the corresponding standard devia-
tion for the window after it (signal and noise)
using the following formula:

S=N ¼ 20 log10

�
σsignalþnoise

σnoise

�
. (15)

As can be seen, by examining the S/N versus
the residual times (Figure 11), the quality of the
picked times depends on the S/N of the record. In
most cases, as the S/N increases the P-arrival
times become quite accurate and with low resi-
dual times compared with the manually picked arrivals. On the other
hand, as the S/N becomes lower the accuracy decreases, as the au-
topickers start missing the P-wave arrivals selecting either second-
ary arrivals or S-waves or noise bursts (e.g., anthropogenic noise,
electronic noise) in the record.
The S/N was selected as a measure of the method’s performance,

as the event’s magnitude is only indirectly correlated with the
quality of the picks. For the same receiver hypocenter combination,
a higher magnitude event will be more accurately picked, but a
noisy receiver will perform worse than a quieter one for the same
event.
We considered that data with residuals larger than 0.3 s have

missed the P-wave arrival pulse and were ignored for the rest of
the analysis. These missed arrivals were observed mainly in low
S/Ns in which the noise could mask the real first arrival making
the picking algorithm to select secondary P-arrivals or even the
S-wave arrival. These criteria were fulfilled by about 85% of the
picks (298 picks for skewness, 302 for kurtosis, and 301 for negen-
tropy) and were subsequently used. It should be noted that about
81% of the picks (depending on the method) had residual times
below 0.2 s. To visualize the residual times, we constructed the
corresponding histograms (Figure 12). As can be seen, the residuals

are positive, as the window needs to slide and include a number of
samples from the event before the HOS methods “register” the ar-
rival. This effect can be minimized by finding a systematic delay
and subtracting it. We have not done this, and we present the results
as obtained (no artificial corrections were applied).
The mean values of the residuals for skewness, kurtosis, and

negentropy are 0.0733, 0.0469, and 0.0559 s, respectively, with
standard deviations at 0.0658, 0.0571, and 0.0638 s. Comparing
the three sets of automatic picks, the kurtosis criterion provided
marginally better results than the negentropy criterion and the skew-
ness criterion had the least accurate results (Tselentis et al., 2011b).

Figure 9. The event selected from (a) the real data and (b) those filtered in the time-
frequency domain. The dashed line is the automatic pick as calculated using the HOS
(kurtosis) criterion, and the dotted line is the actual position of the first break arrival.

Figure 10. Seismological network (triangles) and microearth-
quakes (circles) used to test the proposed methodology.
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CONCLUSIONS

We propose and apply an integrated method for seismic event
detection, denoising, and accurate P-phase picking. The modified
chi-squared test can be used for seismic events identification, re-
quiring from the user only minimal parameter settings while making
no assumptions about the distribution (e.g., Gaussian) of the seismic
noise. The denoising of the events detected by the aforementioned
algorithm takes place in the S-transform domain using the Otsu
thresholding method. The S/N in the neighborhood of the P arrival
can be improved, and this can help with the automatic estimation of
the accurate P-phase arrival time using HOS criteria. In general this
hybrid method is straightforward to implement and can be applied
in parallel for a number of stations/receivers recording. Its advan-
tages include the small number of parameters to be set requiring
minimum user intervention after that and the ability to quickly

process large number of continuous seismic re-
cords and output relatively accurate first arrivals.
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