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High-resolution passive seismic tomography (PST) for 3D velocity,
Poisson’s ratio m, and P-wave quality QP in the Delvina hydrocarbon
field, southern Albania

G-Akis Tselentis1, Nikolaos Martakis2, Paraskevas Paraskevopoulos1, and Athanasios Lois1

ABSTRACT

We have studied using traveltimes of P- and S-waves and initial

seismic-pulse rise-time measurements from natural microearth-

quakes to derive 3D P-wave velocity VP information (mostly

structural) as well as P- and S-wave velocity VP=VS and P-wave

quality factor QP information (mostly lithologic) in a known

hydrocarbon field in southern Albania. During a 12-month moni-

toring period, 1860 microearthquakes were located at a 50-station

seismic network and were used to obtain the above parameters.

The data set included earthquakes with magnitudes ranging

from –0.1 to 3.0 R (Richter scale) and focal depths typically

occurring between 2 and 10 km. Kohonen neural networks were

implemented to facilitate the lithological classification of the pas-

sive seismic tomography (PST) results. The obtained results,

which agreed with data from nearby wells, helped delineate the

structure of the reservoir. Two subregions of the investigated area,

one corresponding to an oil field and one to a gas field, were cor-

related with the PST results. This experiment showed that PST is

a powerful new geophysical technique for exploring regions that

present seismic penetration problems, difficult topographies, and

complicated geologies, such as thrust-belt regions. The method is

economical and environmentally friendly, and it can be used to

investigate very large regions for the optimal design of planned

2D or 3D conventional geophysical surveys.

INTRODUCTION

Passive seismic tomography (PST) has become a well-estab-

lished technique since its introduction in the mid-1970s. Com-

prehensive reviews of different aspects of the method are found

in Thurber (1986), Kissling (1988), and Iyer and Hirahara

(1993). Three-dimensional models of P-wave velocity VP as

well as P- and S-wave velocity VP=VS derived from surface pas-

sive seismic methodologies have proven useful in investigations

of the structure of fault systems and have contributed to our

understanding of seismotectonics and seismogenic processes

over large areas, particularly in crustal studies (Thurber et al.,

1995; Eberhart-Phillips and Michael, 1998; Chiaraba and

Amato, 2003).

In the hydrocarbon industry, seismicity has been used mainly

as a reservoir monitoring tool for mapping fluid movements

(e.g., Rutledge et al., 1998), faults (e.g., Maxwell and Urbancic,

2001), and hydraulic fracturing (e.g., Rutledge and Phillips,

2003). Recently, Zhang et al. (2009) have used the seismicity

caused or induced by hydrocarbon production to perform reser-

voir 3D VP and VP=VS tomography.

PST has also been applied successfully in regional hydrocarbon

exploration, demonstrating its potential to map large areas for a

relatively low cost compared to conventional 3D seismic surveys

(Durham, 2003; Kapotas et al., 2003; Martakis et al., 2003; Mar-

takis et al., 2006). Valoroso et al. (2008) use 4D passive seismic

tomography to detect space-time dependency in response to fluid

pressure. Tselentis et al. (2006) show that PST can even be

applied at a local scale. Although the number of such applications

is limited at the moment, with improvements in data acquisition

and processing technology, the use of PST as a tool for hydrocar-

bon exploration and characterization is likely to flourish.

A hydrocarbon reservoir tends to be acoustically softer than

regions that are full of an incompressible fluid such as water.

Thus, a seismic wave should suffer more attenuation in a hydro-

carbon reservoir than in surrounding materials.

One of the geophysical parameters that correlates best with

the physical state of the rocks and the percentage of fluid
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content is the intrinsic quality factor QP of the compressional

body waves (Bourbie et al., 1987). As an exploratory tool,

attenuation effects have only recently attracted attention (e.g.,

Hedlin et al., 2001; Tselentis et al., 2010). The QP can prove

useful in two ways: as a means of correcting seismic data to

enhance resolution of conventional imaging techniques and as a

direct hydrocarbon or geothermal indicator. The reconstruction

of QP imaging is considered to be a powerful tool for establish-

ing the distribution of fractured systems characterized by fluid

circulation.

The major source of intrinsic attenuation in porous rocks

occurs when the motion of the rock and the fluid in the pores

uncouple. The rock becomes anelastic as energy is lost because

of fluid friction (Pride et al., 2003). If the pore space is com-

pletely filled with fluid, the fluid has less mobility than if there

is some gas saturation, and attenuation is expected to be higher

in a partially fluid-saturated rock (Winkler and Nur, 1982). The-

oretically, a subsurface reservoir full of hydrocarbons will tend

to be acoustically softer than a porous rock filled only with

water (Kumar et al., 2003).

Until recently, most attempts to extract attenuation on a local

scale have been restricted to active seismic data recorded at the

surface (Evans and Zucca, 1988; Clawson et al., 1989). This

approach encounters significant difficulties because the amplitude

spectrum of the seismic record contains the imprint of the ampli-

tude spectrum of the earth’s reflectivity as well as the amplitude

spectrum of the seismic wavelet. In the present investigation, we

attempt to extract seismic attenuation values from data obtained

from a local high-density microearthquake network.

A method based on the inversion of the rise times is expected

to provide the most reliable estimates of intrinsic attenuation

(Liu et al., 1994; Tselentis, 1998). In fact, because only a very

limited portion of the seismogram is used, the effects of multi-

ple waves generated in thin layers around the recording site are

usually minimized (de Lorenzo et al., 2006).

We will always be faced with exploration activity in geologi-

cally complex areas such as fold-and-thrust belts. Exploration in

these areas is challenging as well as expensive and is driving

the oil-exploration industry toward the application of state-of-

the-art techniques such as PST.

The rationale for applying PST as a complementary imaging

tool has several important advantages. First, tomography is a

cost-effective means of imaging a large area with difficult terrain

in which conventional seismic exploration is expensive and can

be of poor quality because of seismic penetration problems. Sec-

ond, PST can provide an accurate 3D velocity model that can be

used to improve (i.e., migration) existing or lower-quality reflec-

tion seismic data. Third, the technique is environmentally

friendly, an important consideration in all operational activities.

Finally, PST can provide parameters related directly to reservoir

properties, such as VP=VS and QP. These parameters are very dif-

ficult to derive from conventional seismic techniques because

they require large-amplitude shear waves.

Processing of PST data at a local scale for hydrocarbon ex-

ploration is more complicated than applying off-the-shelf 3D

inversion algorithms. To get the best resolution of the geologic

formations at the lowest cost, we tap an arsenal of techniques,

including initial-velocity model selection, simultaneous earth-

quake hypocenter and 3D velocity models, QP inversion, and

synthetic and real-data checkerboard tests.

The advantages of applying PST methodologies in the Delv-

ina hydrocarbon region are the easy acquisition of data in a dif-

ficult terrain; the low cost in comparison to conventional 2D or

3D methods; and the wave-propagation scheme (the energy trav-

eling directly from hypocenters to the station on the surface),

which is not affected by overthrusting, velocity inversions, and

problems related to evaporites. The results show that PST can

be used to describe known production zones and to identify

whether upside potential exists within the study area.

GEOLOGY

The study area is located on the southeastern edge of Albania,

close to the border with Greece. This is a key area for various

geodynamic models that have been proposed for the Aegean

region because the transition of the extensional inner Aegean re-

gime to the compressional outer Aegean occurs in the region.

The map of this transition is based on faults that vary from

thrust and strike-slip faults to normal faults (King et al., 1983;

Underhill, 1989).

The Albanian orogenic belt trends north-northwest–south-

southeast and lies between the Dinaric and Hellenic Alps

(Figure 1). This belt was established by Alpine orogenic proc-

esses in the western Balkans area that were related to the plate

convergence between Apulia and Eurasia and the closure of the

Mesozoic Tethyan ocean. The Albanian orogenic belt represents

a complex orogen made up of a heterogeneous tectonic nappe

pile of Paleozoic, Mesozoic, and Cenozoic domains (Aubouin,

1959; Aubouin et al., 1970).

Geotectonically, the study area belongs to the Ionian zone

(Robertson and Shallo, 2000), which forms an unbroken, elon-

gated unit (60–70 km long� 60 km wide) that extends continu-

ously southward into Greece. This unit represents a thin-skinned

fold-and-thrust belt with an evaporitic basal décollement, as

shown by geophysical and well data (ISPGJ-IGJN, 1982). The

outcrop is dominated by large-scale linear folds, forming large

anticlines and synclines that are cut by large high-angle reverse

faults. A major salt diapir in southern Albania is believed to

have protruded upward from underlying thick Triassic salt. Two

main tectonic phases are recognized within the Ionian zone: the

first occurring in the Middle Miocene and the second occurring

around the Miocene–Pliocene boundary. The latter is related to

the final thrusting of the Ionian zone southwestward over the

Sazani zone (ISPGJ-IGJN, 1983).

SEISMOGRAPH NETWORK AND DATA

A feasibility study is always important before a PST is con-

ducted. This allows the network design to consider a uniform

spatial coverage of the area, to use a high sampling resolution,

and to take into account the frequency content. In this case, the

designed network consisted of 50 three-component 1-Hz Land-

Tech LT100 borehole seismometers and 50 24-bit LandTech

LTSR-24 recorders connected to a global positioning system

(GPS) unit (Figure 1). The instruments have a flat transfer func-

tion for velocity in the 1–100-Hz frequency range. The seis-

mometers were buried in shallow 6-m boreholes to improve the

signal-to-noise ratio. Station coordinates were established by dif-

ferential GPS measurements with a horizontal accuracy of 62

m and a vertical accuracy of 61 m.
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This particular case study covered an area of approximately

1000 km2 where there is strong attenuation in conventional seis-

mic reflection energy resulting from a high-velocity and/or kar-

stified carbonate outcrop. Recording was conducted continuously

for 12 months with a sampling frequency of 100 Hz.

The first stage in the analysis of the seismic data was the auto-

matic search for potential seismic events in the data set of each

station. The search was made using the short-term-average=
long-term-average (STA=LTA) algorithm tuned for the data set

(Lee and Stewart, 1981). Next, the selected events of all stations

were automatically cross checked. If an event was detected at

more than six stations, it was marked as a real event; otherwise,

it was eliminated from the data set. Finally, for each of the seis-

mograms, we manually selected the P- and S-wave phases and

measured the corresponding rise times using PASEIS3-LandTech

passive seismic processing software. Figure 2 shows an example

of a microearthquake recorded at 28 selected stations of the

network.

From the acquired data set, more than 2500 events were

recorded; 1860 events (Figure 3) were selected for the tomo-

graphic inversion, using the criteria described below. The rms

error of the hypocentral solution was less than 0.15 s, and hori-

zontal and vertical location errors were less than 1000 m. The

events were located within, or very close to, the network area

(< 10 km from the outer stations). There were at least six P-

and S-wave arrivals per event

The recorded seismicity is presented in map and 3D views in

Figure 3. Northwest–southeast and southwest–northeast cross

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372
Figure 1. Geologic map of Albania. Close-up view depicts the topography of the area and the locations of the microearthquake stations
(triangles) (adapted from Hoxha [2001]).
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sections are presented in Figure 4. In general, the seismicity was

concentrated in small clusters; a higher concentration of epicen-

ters was encountered toward the northwest and southwest parts

of the area.

Magnitudes of the events ranged from 0 to 3 R (Richter

scale), with most events occurring between 1 and 2 R

(Figure 5a). Hypocentral depths were between 0 and 20 km,

whereas most were located at depths of 2–10 km (Figure 5b).

Most of the events were located using 10–30 P- and S-wave

arrivals (Figure 5c), and their rms errors ranged from 0–0.15 s

(Figure 5d). Most rise times (Figure 5e) were 0.015–0.06 s.

DATA PROCESSING

The data processing of a PST survey can be divided into three

main steps. The first is estimating the best-fitting 1D initial ve-

locity model in parallel with the optimization of the hypocenter

locations. The second is the 3D velocity model construction.

The third is related to the quality control (QC) of the results.

Estimating minimum 1D velocity model

The results and reliability of the 3D tomographic inversion,

which is solved as a linear approximation of a nonlinear func-

tion, depend on the initial reference model.

The scope of this phase throughout an iterative joint hypocen-

ter=velocity inversion is to identify the 1D model that minimizes

the rms error of the hypocenters, following Kissling et al.

(1994). We also check the quality of the 1D model following

the procedure of Haslinger (1998). Based on that, we randomly

perturb the calculated seismic events’ hypocenter locations from

0 to 10 km on the x, y, and z axes. If the 1D model we use is

reliable, after recalculating hypocenter parameters, the final

locations will be similar to the original ones (<500 m). Other-

wise, the difference will be larger, suggesting that 1D model

reliability must be reconsidered.

In this case, the final locations for most relocated hypocenters

were less than 150 m in the two horizontal directions but higher

than 150 m in the vertical direction. The reliability of the 1D

model was also tested by comparing event locations derived

from traveltime data from the PST network to locations
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Figure 2. Example of a microearthquake as recorded by 28 sta-
tions of the network. Amplitudes are normalized and time is pre-
sented from the event’s start time s0. The P- and S-wave arrivals
are also displayed.

Figure 3. (a) Epicenters of recorded microearthquakes. (b) A 3D
view of the hypocenters. Color scale shows magnitude
distribution.
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provided by international seismological networks (e.g., European

Mediterranean Seismological Centre and the U. S. Geological

Survey).

As a starting model for the 1D velocity inversion, we used a

reliable and well-tested initial velocity model derived from a

similar survey in the adjacent area of Epirus in northwestern

Greece (Kapotas et al., 2003). This area is located within the

same tectonic zone (Ionian) with similar geotectonic characteris-

tics (King et al., 1983; Martakis et al., 2006; Tselentis et al.,

2006), so we expected this initial model would provide a rea-

sonable approximation.

The 1D initial crustal model was used for a joint hypocen-

ter=velocity inversion to fine-tune the model to the specific area

of interest. The two areas are close and similar, so the new 1D

model was almost exactly the same as the initial model. The 1D

velocity model for P-wave velocity and VP=VS that was used in

following inversion is presented in Table 1.

Estimating 3D velocity model

In this phase, we attempt to estimate the 3D velocity model

and corresponding hypocenter parameters using the P- and
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Figure 4. Depth cross section of seismicity distribution projected
along (a) northwest–southeast and (b) southwest–northeast
directions.

Figure 5. Histogram of (a) microearthquake
magnitudes, (b) hypocenter depths, (c) number of
peaks, (d) rms, and (e) rise times.
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S-wave arrival times at the seismic stations and an initial esti-

mate of the hypocenter locations and coordinates of the seismic

stations.

The traveltime Tij of a seismic wave from hypocenter i to re-

ceiver j is given by

Tij ¼
ðreceiver

source

u ds; (1)

where u is the slowness field and ds is a ray segment along the

raypath (Thurber, 1983; Evans et al., 1994; Martakis et al.,

2006). The arrival times sij are given by

sij ¼ si þ Ts
ij
ðxi; yi; zi; uðsÞ; x; y; zÞ; (2)

where si is the time of origin of the ith earthquake and where

(xi, yi, zi) and (x, y, z) are the coordinates of the source and

receivers, respectively.

If rij ¼ sobs
ij � scalc

ij are the arrival-time residuals between the ob-

served sobs and calculated scalc traveltimes, we end up with the fol-

lowing linear system of equations:

rij ¼
X3

1

oTij

oxk

Dxk þ Dsi þ
XL

1

oTij

oml
Dml; (3)

Here, Dxk and Dml are the perturbations to the hypocenter pa-

rameters and the velocity perturbations, respectively.

The partial derivatives in equation 3, with respect to the

hypocenter parameters, are given by

oTij

oxk
¼ � 1

V

dxk

ds

� �
source

; (4)

as described by Lee and Stewart (1981). According to Thurber

(1983), the partial derivatives with respect to the velocity model

parameters are approximations of the path integrals, given by

oTij

oml
¼

ðreceiver

source

�1
1

V x; y; zð Þ

� �2
oV x; y; zð Þ

omi
ds: (5)

The velocity V(x,y,z) and its partial derivative with respect

to a model parameter can be calculated through an interpola-

tion scheme. The minimization of the traveltime residuals

involves solving the forward and inverse problems during an

iterative process. The forward problem can be written in matrix

notation as

Dd � GDm; (6)

where G is the Jacobian matrix containing all of the partial

derivatives in equation 3, Dd are the residuals, and Dm are the

perturbations of the model parameters. Because the problem of

passive tomography is usually underdetermined or mixed deter-

mined, the damped least-squares method is applied:

Dm ¼ GTGþ e2I
� ��1

GTDd; (7)

where e2 is the damping factor.

The updated velocity model was used to again calculate the

hypocenter parameters, trying to minimize the residual travel-

times of the predicted traveltimes from the observed ones. The

updated hypocenter parameters were then used for a new itera-

tion to improve the velocity model.

PATOS2-LandTech tomographic inversion software was used

to perform all of the calculations. The parameterization of the

problem was based on the 3D grid of nodes technique. To solve

the forward problem, two ray-tracing algorithms were used and

tested: approximate ray tracing (ART) and pseudobending (Um

and Thurber, 1987) and Runge-Kuttaþ perturbation (RKP)

shooting ray tracing (Virieux, 1991). For this study area, we

preferred ART and pseudobending.

In the case of the Delvina PST survey, we applied the above-

mentioned procedures, checking different damping and gridding

parameters to provide a reliable and robust 3D model without

sacrificing its resolution. The trade-off curves for damping the

value estimation showed that the optimum damping factors were

20 for VP and 10 for VP=VS.

Different parameterization schemes also were applied. Based

on the geometry of the seismic network and the distribution of

hypocenters, the optimum result was derived using a 2� 2� 1-

km (along the x-, y-, and z-axes) grid spacing on a linear B-

spline interpolation scheme with values every 100 m. Although

efforts were made to minimize the grid spacing further, the seis-

mic events were distributed unevenly, with distances between

stations of approximately 5 km; the resulting model showed

undesirable velocities and oscillations. In our research, a

2� 2� 1-km grid spacing was eventually selected for interpreta-

tion. The processing steps are shown in Figure 6.

The seismic events used to construct the model provided

47,280 P- and S-wave arrivals (24,438 P-wave and 22,842 S-

wave) for the tomographic inversion to estimate 25,076 VP and

VP=VS parameters. Five iterations were performed, at which

point the rms error was sufficiently low. For the rms to be con-

sidered sufficiently low, two criteria are used: The model var-

iance must be very low or stable, and the rms with the iteration

number curve must be almost flat or show small change. The

rms of the final model was 0.0964, which was reduced by

21.5% from the starting value of 0.1228. The final total rms for

seismic events using hypocenter estimation was 0.070, which

was reduced by 39.1% from a starting value of 0.115. The reli-

ability of the inversion result should not be limited to the rms

values but should be examined further (Appendix A).
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Table 1. Minimum initial 1D velocity model for Delvina pas-
sive seismic tomography survey.

Depth (km) VP (km=s) VP=VS

–2 4.90 1.78

0 5.12 1.78

2 5.33 1.78

4 5.52 1.78

6 5.62 1.78

8 5.82 1.78

10 6.05 1.78

15 6.25 1.78

20 6.39 1.78

30 6.50 1.78

40 8.00 1.78
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Estimating 3D QP model

A mathematical model for realistic pulse broadening in an in-

homogeneous medium has been suggested by Gladwin and

Stacey (1974) and Stacey et al. (1975). These studies show

experimentally that the rise times of acoustic signals propagat-

ing linearly in elastic media with frequency-independent quality

quotient Q is described by

s ¼ s0 þ C

ð
ray

ds

VpQ
¼ s0 þ C

ð
ray

DT

Q
; (8)

where s is the pulse rise time, s0 is the original pulse rise time

at the source, C is a constant, ds is an arc segment along a ray-

path, and DT is the incremental traveltime.

The pulse rise time is the amplitude of the first-arriving pulse

divided by the steepest rising slope. The rise time, defined in

displacement records, is approximately the pulse width on ve-

locity seismograms (Zucca et al., 1994). This parameter is

defined as the time difference from the onset of the initial ar-

rival to the initial peak for displacement seismograms or, equiv-

alently, from the onset to the time at which zero is crossed for

the first time in velocity records. The error introduced by mis-

speaking can be large for short pulse widths, so we use the time

between the linear extrapolations of the rising slope at half peak

(Figure 7a) to the time axis and the first zero crossing (Zucca

et al., 1994).

Figure 7b shows an increase in the observed rise times with

increasing hypocenter distance, which indicates that attenuation

increases with hypocenter distance and that the rise-time model

can be used in this study area.

For a medium with constant VP, where Q = Q0, equation 8

can be written in a linear form:

s ¼ s0 þ
CT

Q0

: (9)

The ratio T=Q is usually referred as t* (t star) in the literature.

The constant C was determined experimentally for ultrasonic

acoustic pulses to be 0.5 (Gladwin and Stacey, 1974). A theoret-

ical demonstration, based on an impulsive displacement source,

is given by Kjartansson (1979).

Other investigations (Blair and Spathis, 1982; Liu, 1988; Wu

and Lees, 1996; Tselentis, 1998) show that C depends on the

shape of the source-time function. In the case of small events, a

C value of 0.5, which corresponds to an impulsive displacement

function, is commonly used (de Lorenzo et al., 2004). This is

because first-arrival velocity pulses for microearthquakes appear

closest in shape to derivative Gaussian pulses, which correspond

to Gaussian function displacements.

Obviously, the most limiting assumption of the method for

estimating QP is that it neglects the directivity effect of the seis-

mic radiation generated by a finite dimensional seismic source

(Zollo and de Lorenzo, 2001; Tselentis et al., 2010).
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Figure 6. Data processing stages for obtaining
the 3D velocity structure of the region.
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Because our methodology does not use amplitude informa-

tion, we did not perform the deconvolution for the instrumental

response. Furthermore, the histogram of the observed rise times

shows that most values lie between 0.015 and 0.06 s (Figure

5e), indicating an average frequency content ranging from 3 to

40 Hz. In this frequency band, the response of the equipment

used is flat and cannot distort the duration and shape of the

observed signals.

The first step in QP model inversion is to estimate the initial

rise time for each event. Because each event has a different ini-

tial pulse width s0, there is one s0 value per event. After the

picking was completed, we plotted the values of the rise times

for each event against the P-wave-arrival traveltimes (Figure

7c). A straight line was fitted to the data points using the least-

squares method. The point where the line intersected with the

rise-time axes (equation 9) was used to determine the value of

s0 used for that event. From equation 9, we can write

s� s0 ¼ C

ð
ray

1

QpVP

ds: (10)

As made clear in equation 10, it is important to have an accu-

rate P-wave velocity model (QP is the target parameter) to apply

the method for estimating QP. The nonlinear tomographic analy-

sis of the P-wave arrival times provided a 3D P-wave velocity

model as well as the raypaths from the hypocenter of each event

to the recording stations.

In a process similar to velocity tomography, equation 10 was

parameterized in discrete blocks, within which attenuation was

assumed to be constant (Tselentis et al., 2010). In selecting the

block dimensions, there was a trade-off between the higher reso-

lution of the model and sufficient raypath coverage. The linear

inversion for QP was accomplished following the same method-

ology as that used for the velocity inversion (Tselentis et al.,

2010).

PST RESULTS

The inversion resulted in the form of horizontal and vertical

cross sections for VP and VP=VS that are presented in the follow-

ing discussion. The horizontal sections were constructed every

500 m, starting from mean sea level, and the vertical sections

were constructed every 4 km. Vertical cross sections of VP and

VP=VS values obtained from the seismic tomography results are

calculated along the directions shown in Figure 8. Lines OO0

and PP0 represent the cross sections passing through wells D4–

D10 and D4–D12, respectively (Figure 8).

In this paper, we do not conduct a detailed geologic/lithologic

interpretation of the PST results. The quantitative interpretation

of PST results in relation to the properties of hydrocarbon reser-

voirs is a complicated task beyond the scope of the present text.

Instead, we present some general conclusions and try to
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Figure 7. (a) Measurement of rise time and pulse-width broaden-
ing for a single event recorded at station 24. The start of the pulse
(solid line), the end of the rise time (dashed line), and the pulse
width (dotted line) are shown. (b) Increasing rise times with
increasing hypocenter distance. (c) Plot of measured rise times for
a selected event in order to estimate s0.

Figure 8. Directions along which vertical tomographic sections
have been compiled. The positions of existing wells and the loca-
tion of the (A) oil- and (B) gas-producing areas are also
presented.
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correlate the seismic tomography sections with the general fea-

tures of the oil and gas fields.

Figure 9 compares the VP cross section obtained along line

DD0 (Figure 8) with a geologic model given by the Albanian

National Agency of Hydrocarbons (Luan et al., 2001; Velaj,

2001), based on well data and in part on poor-quality conven-

tional seismic results. It is obvious that the geologic information

and PST results were very similar. Starting from the west, the

low velocities (arrow a) correspond to Quaternary and flysch

deposits, whereas high velocities (arrow b) fit very well with

Cretaceous, Jurassic, and Tertiary outcrops toward the north-

western part of the investigated region. The anticline (arrow c)

is also reconstructed very well, and the evaporitic flysch (arrow

d), T3 Tertiary dolomite (arrow e), and Jurassic carbonate

(arrow f) layers correlate well with the velocity section from

PST. This correlation is presented as an additional quality con-

trol (QC) test and not for interpretation reasons.

Although the Delvina area has been widely explored since

1980 and there have been oil and gas discoveries in the region,

the most significant information about its structural and lithologi-

cal regime was derived partially from well data and surface geol-

ogy. Conventional seismic sections were of very poor quality

because of severe seismic penetration problems, the complicated

overthrust geotectonic regime, and the presence of evaporitic

structures. Thus, conventional 2D seismic results could not be

used to identify and characterize the structural regime of the area.

Figure 10 presents horizontal VP sections at a depth spacing

of 500 m, whereas Figures 11 and 12 depict vertical VP sections

along the direction shown in Figure 8. Similar sections for

VP=VS are shown in Figures 13 and 14.

Apart from the structural information given by the VP and

VP=VS sections, some lithologic information can be obtained. It

is known (Hamada, 2004) that VP is sensitive to type of satura-

tion fluid, so VP=VS is a good tool for identifying fluid type.

The fact that VP decreases and VS increases with increases in

light hydrocarbon saturation makes VP=VS more sensitive to

changes of fluid type than using VP or VS separately.

Finally, Figure 15 presents horizontal QP sections, resulting

from the inversion of the rise times at a depth spacing of 1000 m.

Gas field

In this section, we present an interpretation of PST results by

correlating the results with preexisting geological, geophysical,

and well data, focusing mainly on the Delvina gas field.

In Figures 16 and 17, the correlation between PST and preex-

isting data is presented at 2 and 3.5 km, respectively. In both

figures, most of the structures correlate well with the PST data

(Ftera-Fitore and Maligere anticlines and Vurgut syncline, as

shown in Figure 10).

Figure 18 presents a 3D view of the Delvina anticline struc-

ture and the surrounding structures as produced using PST

results. The Delvina anticline is adjacent to the Ftera-Fitore anti-

cline to the west.

Next, we focus on the production area of the Delvina gas

field (region B on Figure 8; wells D4, D9, D10, and D12) to

provide a brief interpretation of the PST results. Figure 19

shows the VP and VP=VS cross sections along wells D4–D12

(OO0 in Figure 8) and focuses on the corresponding results

between 18 and 32 km (Figure 19b and d), a region believed to

correspond to the gas-production zone. The VP and VP=VS sec-

tions and the 3D model (Figure 18) show that although the PST

models were constructed for an area of approximately 1000

km2, they correlate satisfactorily with well data and can be used

to delineate the structure of the reservoir.

The bottom of the flysche layer, which acts as a top seal of

the gas reservoir obtained from the PST survey, corroborates the

well findings. A production zone spanning between 21 and 26

km with a thickness of 0–700 m above the water-oil contact

(WOC) can be delineated. Well D12, characterized by high pro-

duction, was located toward the center of the Delvina anticline;

well D4, characterized by much less production, was located

near the left border of the region (Figure 18). A secondary anti-

cline structure with characteristics similar to the neighboring

production zone was also identified (denoted by the dashed line

in Figure 19b and d) and will be tested by a new well.

Figure 20 presents the VP and VP=VS PST results along the

PP0 direction (Figure 8), with inserts showing the region

between 12 and 22 km (Figures 20b and d). The only well that

was difficult to correlate with the seismic tomography result

was D10. In this well, which was not producing at the time of

the study, the VP=VS at the target depth (3.5 km) was close to

1.8, which is higher than the values (<1.75) observed for wells

D4 and D9, which were producing.

Low VP=VS values characterize gas-bearing rocks (i.e., those

with a high fluid compressibility), whereas higher values of

VP=VS indicate liquid-bearing formations (i.e., those with a low

fluid compressibility). Furthermore, pore-fluid pressure may also

play a role by inducing a fluid-phase transition and by keeping

pores and cracks open. As a consequence, velocities are further

affected. Using laboratory measurements and effective medium

modeling, Dvorkin and Nur (1996) show that crack opening

induced by increasing pore pressure leads to a strong reduction

in VP=VS in gas-bearing rocks.
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Figure 9. Comparison of a general geological section along line
DD0 (in Figure 8) and the derived VP velocity model from the PST
survey. (a) Low velocities correspond to Quaternary and flysch
deposits. (b) High velocities fit well with Cretaceous, Jurassic,
and Tertiary outcrops toward the northwestern part of the investi-
gated region. (c) The anticline is reconstructed very well. (d) The
evaporitic flysch, (e) T3 Tertiary dolomite, and (f) Jurassic car-
bonate layers also correlate well with the velocity section from
PST. This correlation is an additional QC test and not for interpre-
tation; thus, only main structures are compared with the arrows.
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Figure 10. (a) Horizontal VP sections of the investigated area spaced at 500 m. Damping is 30 and grid spacing is 1000 m for all views.
Depth is (upper left) 2 km, (upper right) 2.5 km, (lower left) 3.0 km, and (lower right) 3.5 km. (b) Enlarged VP section for the production
interval from 2 to 3.5 km. Ellipses A and B correspond to regions of known oil and gas reservoirs, respectively.
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Figure 21 presents the values of VP=VS versus VS and VP,

respectively, obtained for the gas field and at various depths on

figure, what are the units for Vp – km=s?. Judging from this

diagram, we can see that at the depth of the gas-field reservoir

(�3 km), the VP=VS values reached a minimum, as expected

from the literature. The VP value for well D10 at the target

depth was slightly higher than that for wells D4 and D9 (Figure

20b). Well D9 had higher production than well D4, probably

because it is crestal to the structure (Figures 20a and b).

The physical parameters of many rocks contribute to changes

in seismic velocities of rocks in addition to mineralogy, poros-

ity, and in situ stress conditions such as pore-fluid properties,

which in turn depend on temperature and pressure (Vanorio

et al., 2005). It is well known that the content and physical state

of fluids affect P-wave velocities more strongly than S-wave

velocities. Figure 22 presents the variation of VP versus VS for

the gas-field reservoir region (�3 km) at various depths overlaid

on empirical curves estimated for different lithologies (Castagna

et al., 1985, 1993).

Decreases of QP in rocks (Winkler and Nur, 1979) reportedly

have been caused by partial saturation (i.e., gas-liquid mixture).

This seems to agree with the results obtained by the attenuation

tomography in our investigation. Figure 15 shows that in the

region of the gas field, we obtain lower values of QP than

expected.

Oil field

Toward the southwestern end of the investigated area is a

well-known oil-producing reservoir, shown as region A in Fig-

ure 8. In this section, we attempt to explain the results of the

PST analysis in relation to this reservoir.

Figure 23 presents VP and VP=VS cross sections, respectively,

along line EE0 (Figure 8) are there units for Vp=Vs on Figure

23?. This line passes through the Finiq oil field and well D-12,

and it was selected for interpretation because the oil field is

very well defined and can be used for calibration. In the VP and,

especially, the VP=VS sections, the carbonate top is estimated
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Figure 11. Vertical VP sections along the south-
west–northeast lines depicted in Figure 8. Known
synclines and anticlines are also shown. A = oil
field; B = gas field.

Figure 12. Vertical VP sections along the north-
west–southeast lines depicted in Figure 8. A = oil
field; B = gas field.
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Figure 13. (a) Horizontal VP=VS sections of the investigated area spaced at 500 m. Damping is 10 and grid spacing is 1000 m for all views.
Depth is (upper left) 2 km, (upper right) 2.5 km, (lower left) 3.0 km, and (lower right) 3.5 km. (b) Close-up of the VP=VS section for the
producing depth interval from 2 to 3.5 km. A = oil field; B = gas field.
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well from the PST results at depths of 1300–1600 m and in

Delvina at depths of 2800–2900 m.

Figure 24 depicts the obtained values of VP=VS versus VS and

VP, respectively, for the oil-producing region at various depths.

At the depth where the oil reservoir is encountered (�2 km),

the VP=VS values reach a maximum value, which contradicts the

minimum values obtained for the gas field. Figure 25 presents

the relationship between VP and VS values, which were obtained

from the passive survey but only for the corresponding produc-

tion depths of the gas and oil reservoir. Despite the overlapping

region, there is a tendency for the oil and gas values to separate

from each other on the crossplot, which is more obvious in

Figure 26, where the relationships between VP=VS and VP and

between VP=VS and VS are plotted.

Similar to the results observed in the gas field, lower QP val-

ues were also observed in the oil field (Figure 15); and in the

eastern limit of the oil field, a sharp QP contrast was observed.

This is consistent with similar contrasts observed in the VP and

VP=VS tomographic results (Figure 13). These results mark an

abrupt change in the lithology and=or saturation of the rocks. In

the gas field, the western limit is marked by a less-pronounced

contrast in the geophysical parameters.

LITHOLOGICAL CLASSIFICATION WITH

KOHONEN NEURAL NETWORKS

SOM theory

To analyze the clustering of the data and to reveal the major

lithological units in the region further, we use Kohonen self-

organizing maps (SOMs). These unsupervised artificial neural

networks developed by Kohonen (1995) are intended to provide

ordered feature maps of input data after clustering (Ripley, 1996;

Vesanto et al., 1999; Chang et al., 2002). In other words, SOMs

are capable of mapping high-dimensional, similar input data into

clusters close to each other on an n-dimensional grid of neurons

(units).

This grid is the SOM map and is known as the output space,

whereas the input space is the original space where the data pat-

terns that we want to discover (in this case, volumes with simi-

lar properties) exist. This mapping tries to preserve topological

relations (Villmann et al., 1997), i.e., patterns that are close in

the input space will be mapped to neurons that are close in the

output space, and vice versa. To provide even distances between

units in the output space, hexagonal grids are often used (Bacao

et al., 2005).

A basic distinction between classical neural networks and

SOMs is the latter’s ability to perform unsupervised learning.

SOMs require no a priori information to function, and they

excel at establishing unseen relationships in data sets (Penn,

2005). Once a SOM is trained for a specified data set, it can be

applied to similar data sets.

The SOM training process for a given input pattern begins by

calculating the Euclidian distance between that pattern and ev-

ery unit in the network the winning unit is the one with the

smallest distance and accept that the pattern is mapped onto that

unit. If the SOM has been trained successfully, then patterns

close in the input space will be mapped to neurons close in the

output space, and vice versa.

The overall learning process of a SOM is accomplished

through the iterative process depicted in Figure 27. Fitting of

model vectors mi is performed by sequential regression. The

best match for each sample (index c) is subject to the condition

8i; x tð Þ � mc tð Þk k � x tð Þ � mi tð Þk k; (11)

where t is the step index for each observation vector x. Then,

all model vectors (or a subset of them) that belong to nodes

around node c = c(x) are updated by the relation

mi tþ 1ð Þ ¼ mi tð Þ þ hc xð Þ;i x tð Þ � mi tð Þð Þ½ �: (12)

In this formula, hc(x),i is the neighborhood function, which

decreases with increasing separation between the ith and

cth nodes on the map grid. This regression is reiterated over

the available samples (Kohonen, 1995) to find the optimal

index c.

To extract information from the SOM, the U-matrix is fre-

quently used. This is a representation of the SOM, depicting the

average distance of each node with its neighboring nodes. If
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Figure 14. Vertical VP=VS sections along the
southwest–northeast lines depicted in Figure 8.
A = oil field; B = gas field.
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Figure 15. QP horizontal sections of the investigated area at a depth interval of 1000 m. Depth is (upper left) 1.5 km, (upper right) 2.5 km,
(lower left) 3.5 km, and (lower right) 4.5 km. A = oil field; B = gas field.
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Figure 18. A 3D view of the Delvina anticline
structure and surrounding structures based on
PST results (VP> 5.24). (upper right) Close-up
view of a section of the structure.

Figure 16. Correlation between preexisting data interpretation
and PST results at 2 km depth (from mean sea level). Contours
depict known depths to the limestone. Damping is 2 km; grid
spacing is 1000 m.

Figure 17. Correlation between preexisting data interpretation
and PST results at 3.5 km depth (from mean sea level), focusing
on the Delvina gas-production area. Contours depict depth to the
limestone. Damping is 3.5 km; grid spacing is 1000 m.
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Figure 20. (a) VP cross sections along line PP0. (b)
Comparison with wells D-4 and D-10. (c) VP=VS

cross sections along line PP0. (d) Comparison with
wells D-4 and D-10. Dashed line labeled WOC is the
water-oil contact.

Figure 19. (a) VP cross sections along line OO0. (b)
Comparison with wells D-4 and D-12. (c) VP=VS

cross sections along line OO0. (d) Comparison with
wells D-4 and D-12. Dashed line labeled WOC is the
water-oil contact. The dotted line presents a possible
second anticline.
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Figure 22. Relation between VP and VS versus depth for
the gas-producing area. Mudrock-line data are from Cas-
tagna et al. (1985); all other data are from Castagna et al.
(1993).

Figure 21. Relation between VP=VS and (a) VS

and (b) VP for the gas-producing area at various
depths.
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distances between neighboring neurons are small, then these

neurons represent a cluster of patterns with similar characteris-

tics. If the neurons are far apart, then they are located in a zone

of the input space that has few patterns and can be seen as a

separation between clusters. The U-matrix constitutes a particu-

larly useful tool to analyze the results of an SOM because it

allows an appropriate interpretation of the clusters available in

the data.

SOM application and results

We applied the above methodology over a selected volume of

the study area that included the oil and gas reservoirs. We

trained the neural network by using VP, VS, Poisson’s ratio m,

and QP 3D data (Figure 28). Because only two of these parame-

ters are required to get the third, one might think that training

the SOM with two of them is adequate. Klose (2003) proves that

the results are further improved if we use all four parameters.

The initial step is to read all of the component parameters of the

data and to construct the component planes for each of them as well
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Figure 24. Relation between VP=VS and (a) VS

and (b) VP for the oil-producing area at various
depths.

Figure 23. (a) VP and (b) VP=VS cross sections passing through
the Finiq oil field and well D-12.

Figure 25. Relation between VP and VS, at the producing depths
of the gas (blue circles) and oil (red stars) fields.
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Figure 26. Relation between VP=VS and (a) VP and (b) VS at the
producing depths of the gas (blue circles) and oil (red stars) fields. Figure 27. SOM network training process.

Figure 28. All input values of VP, VS, Poisson’s ratio m, and QP data are used to train the neural network.
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as to calculate the unified distance matrix (known as U-matrix)

shown in Figure 29a–e. The next step is to define and separate the

SOM data in clusters (Figure 29f). For this, the k-means clustering

method is used. The Davies-Bouldin index (Davies and Bouldin,

1979) is calculated and used as a metric of the cluster separation.

For us, calculating this index for an increasing number of clusters

indicates that our data are best divided into five clusters.

Judging from Figure 29, we can see that the highest Poisson

values for these seismic lines do not coincide with the lowest P-

wave velocities, but they correlate with the lowest S-wave

velocities of the medium. Also, the lowest Poisson values corre-

late better with higher VS values than the VP ones.

The results from the classification process are mapped in the

form of horizontal sections at a spacing of 500 m (Figure 30).

This achieves an automatic initial separation of the major litho-

logic units.

CONCLUSIONS

A microearthquake network consisting of 50 three-component

stations was installed in southern Albania to perform a PST inves-

tigation of a hydrocarbon field. In the tomographic approach, trav-

eltimes were used to estimate the P- and S-wave velocities, to

infer variations of VP=VS, and to construct various tomographic

images. Furthermore, the 3D distribution of QP was inferred from

first-pulse-width measurements. The results obtained were used to

train a Kohonen neural network, and a lithological classification

was attempted using data-clustering methods. The passive results

showed a satisfactory correlation with the geologic features and

the production characteristics of the existing wells in the area, and

they explained the lateral distribution of the oil and gas reservoirs.

Based on comparisons between conventional seismic and PST

data, it is obvious that PST can provide a wealth of information

for this particular area where conventional 2D seismic surveys did

not work well. PST is the most appropriate method for surveying
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Figure 29. (a) U-matrix and the component planes, (b) VP, (c) VS,
(d) Poisson’s ratio v, (e) QP, and (f) the selected clusters.

Figure 30. SOM clustering results presented as horizontal sec-
tions at depths of (a) 1, (b) 1.5, (c) 2, (d) 2.5, (e) 3, and (f) 3.5 km.
Numerals measure the local grid coordinates (in kilometers). (g)
The map indicates the location of the presented results on the to-
mography block. The color scale indicates the cluster as deter-
mined in Figure 29.
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this region because of the very complicated over-

thrust geotectonic regime, along with the pres-

ence of evaporitic structures.
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APPENDIX A

QUALITY CONTROL

The final step of the inversion procedure is to

assess the resolution and reliability of the results.

One metric most commonly used is the derivative

weighted sum (DWS). The DWS provides a reli-

able estimate of the sampling of the investigated

area by summing up all of the ray segments in the

region of influence of one velocity parameter and

weighting them according to the ray-velocity--

parameter (node) distance.

The DWS is calculated (Toomey and Foulger,

1989) by

DWS anð Þ ¼ N
X

i

X
j

ð
Pij

xn xð Þds

 !
;

(A-1)

where i and j are the event and station indices, xn

is the weight used in the linear interpolation that

depends on coordinate position, Pij is the raypath

between i and j, N is a normalization factor that

takes into account the volume influenced by an,

and ds is the segment along the raypath. The

quantity DWS quantifies the relative ray density

in the volume-of-influence of a model node,

weighting the importance of each ray segment by

its distance to the model node. It yields a rough

estimate of the illumination of the model space.

The DWS values depend on the ray-segment

length.

The most appropriate method of estimating the

reliability of the tomography results is by per-

forming a synthetic sensitivity test. This procedure

can provide information on the effects of the

model grid spacing and the data distribution. Also,

it can estimate the proximity of the calculated

model parameters to the initial absolute values.
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Figure A-1. DWS of VP and VP=VS at 1-km spacing, ranging from 0 km on the top
row to 3 km on the bottom row.
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In most cases, the checkerboard test is used,

following the technique described for the feasi-

bility study. Combining the above-mentioned

methods can be very useful in identifying possi-

ble artifacts and consequently avoiding

misinterpretations.

The DWS maps related to this investigation

are presented in Figure A-1. The obtained VP and

VP=VS model is more accurate in areas with

DWS values exceeding 500.

Next, synthetic checkerboards were generated

by taking the 1D initial starting velocity models

and superimposing a 610% velocity perturbation

(Figure A-2), applied in 2� 2� 1-km model cells.

Each transition from high to low velocity occurred

over two model blocks because the regularization

used in the inversion impeded the reconstruction

of sharp velocity contrasts between model blocks.

Although the optimal horizontal wavelength in

the checkerboard test is 1 km, structures with

much shorter wavelength can be resolved by the

data, e.g., the corners of the checkerboards are

well imaged in the best-resolved regions. Syn-

thetic traveltimes were calculated using the hypo-

center-stations’ geometry of the real data as well

as the velocity distribution of the checkerboard

model. Finally, Gaussian noise of zero mean and

a standard deviation of 0.05 s was added to the

resulting synthetic traveltimes. In the reconstruc-

tions, the original 1D velocity models were

used as starting models, with the earthquake ori-

gin times and hypocenter locations randomly

redistributed with zero-mean Gaussian noise and

with a 0.1-s and 1-km standard deviation,

respectively.
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